Automated Control of Amplified Pulse Duration Using the DazzlerTM / DazScopeTM Solution
ثبت نشده
چکیده
منابع مشابه
pH Effect on the Size of Graphene Quantum dot Synthesized by Using Pulse Laser Irradiation
In this study graphene oxide (GO) was synthesized by using Hummer’s method. Low dimension graphene quantum dot nanoparticles (GQDs) were synthesized using pulse laser irradiation. Fourier Transform-Infrared Spectroscopy (FTIR), Ultraviolet-Visible (UV-Vis) spectroscopy and photoluminescence (PL) analysis were applied to study the GQDs characteristic. Scanning electron microscopy illustrated the...
متن کاملApproximate Solution of the Second Order Initial Value Problem by Using Epsilon Modified Block-Pulse Function
The present work approaches the problem of achieving the approximate solution of the second order initial value problems (IVPs) via its conversion into a Volterra integral equation of the second kind (VIE2). Therefore, we initially solve the IVPs using Runge–Kutta of the forth–order method (RK), and then convert it into VIE2, and apply the εmodified block–pulse functions (εMBPFs) and their oper...
متن کاملX-ray Pulse Duration Control in the LCLS
X-ray pulse duration control is critical to exploring the ultra-fast science at an x-ray freeelectron laser (FEL) facility such as the Linac Coherent Light Source (LCLS). The pulse length of a typical electron bunch that drives a self-amplified spontaneous emission (SASE) FEL is limited to the order of 100~200 fs, due to short-bunch collective interactions. Many novel schemes have been proposed...
متن کاملUnique Solution of Short Pulse Propagation in Nonlinear Fiber Bragg Grating
In this study, a new numerical method is introduced to obtain the exact shape of output pulse in the chalcogenide fiber Bragg grating (FBG). A Gaussian pulse shape with 173 ps width is used as an input pulse for lunching to a 6.6 mm nonlinear FBG. Because of bistable and hysteresis nature of nonlinear FBG the time sequence of each portion of pulse is affected the shape of output pulse. So we di...
متن کاملAll-optical, in-situ histology of neuronal tissue with femtosecond laser pulses
Goal We describe the application of femtosecond laser pulses to image and ablate neuronal tissue for the purpose of automated histology. The histology is accomplished in-situ by serial two-photon imaging of labeled tissue and removal of the imaged tissue with amplified, approximately 100 fs duration pulses, as illustrated schematically in figure 1A. The ablation of tissue with femtosecond, infr...
متن کامل